shellcode编写探究
前言
shellcode是不依赖环境,放到任何地方都可以执行的机器码。shellcode的应用场景很多,本文不研究shellcode的具体应用,而只是研究编写一个shellcode需要掌握哪些知识。
ShellCode编写原则
1、不能有全局变量
因为我们编写shellcode时,使用的全局变量是自己的进程里面的全局变量,注入到别的进程里,这个地址就没用了。
2、不能使用常量字符串
和第一点原因一样,字符串常量值也是全局变量,注入到别的进程里,根本没有这个字符串。
要使用字符串,需要使用字符数组。
char s[] = {'1','2',0};
3、不能直接调用系统函数
调用系统函数的方式是间接调用(FF15),需要从IAT表里获取API地址,每个进程的IAT表位置不同,且对方的进程可能没有导入你需要调用的函数的DLL,那么你是不能调用这个系统函数的。
所以我们需要用到 LoadLibrary 和 GetProcAddress 这两个函数,来动态获取系统API的函数指针。
但是 LoadLibrary,GetProcAddress 本身就是系统函数,它们本身就依赖IAT表,咋办呢?
解决方案是这样的:通过FS:[0x30] 找到PEB,然后通过PEB里的LDR链表 [PEB+0x0C]找到 kernel32.dll 的地址,然后我们遍历它的 IAT表,找到 LoadLibrary 和 GetProcAddress 函数。
4、不能嵌套调用其他函数
和前两点道理是一样的,本进程里的函数地址,拿到别的进程的虚拟地址空间是无效的。
TEB/PEB
每个线程都有一个TEB结构来存储线程的一些属性结构,TEB的地址用fs:[0]
来获取
在0x30这个地址有一个指针指向PEB
结构,PEB就是进程用来记录自己信息的一个结构
完整结构如下
在PEB的0x00c
偏移有一个 Ldr _PEB_LDR_DATA
结构跟进去
可以得到3个结构如下所示
InLoadOrderModuleList
:模块加载的顺序
InMemoryOrderModuleList
:模块在内存的顺序
InInitializationOrderModuleList
:模块初始化的顺序
思路
我们一般使用api会直接使用LoadLibrary
和GetProcessAddress
,但是这里肯定会依赖IAT表,所以这里我们就需要自己实现api所完成的功能
TEB
-> PEB
-> PEB + 0x0C
-> Ldr _PEB_LDR_DATA
-> InLoadOrderModuleList
-> kernel32.dll
-> 导出表定位GetProcessAddress
-> 通过找到的GetProcessAddress实现LoadLibrary
实现过程
首先我们自己定义几个结构体,因为我们不依赖系统自己实现
typedef struct _UNICODE_STRING { USHORT Length; USHORT MaximumLength; PWSTR Buffer; } UNICODE_STRING, *PUNICODE_STRING; typedef struct _PEB_LDR_DATA { DWORD Length; bool Initialized; PVOID SsHandle; LIST_ENTRY InLoadOrderModuleList; LIST_ENTRY InMemoryOrderModuleList; LIST_ENTRY InInitializationOrderModuleList; } PEB_LDR_DATA,*PPEB_LDR_DATA; typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; UINT32 SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; UINT32 Flags; USHORT LoadCount; USHORT TlsIndex; LIST_ENTRY HashLinks; PVOID SectionPointer; UINT32 CheckSum; UINT32 TimeDateStamp; PVOID LoadedImports; PVOID EntryPointActivationContext; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY; typedef HMODULE (WINAPI * PLOADLIBRARY)(LPCSTR); typedef DWORD (WINAPI * PGETPROCADDRESS)(HMODULE, LPCSTR); typedef DWORD (WINAPI * PMESSAGEBOX)(HWND, LPCSTR,LPCSTR,UINT);
然后定义shellcode,这里因为kernel32.dll是unicode字符串所以用两字节存储
char szKernel32[] = {'k',0,'e',0,'r',0,'n',0,'e',0,'l',0,'3',0,'2',0,'.',0,'d',0,'l',0,'l',0,0,0}; // Unicode char szUser32[] = {'u','s','e','r','3','2','.','d','l','l',0}; char szGetProcAddress[] = {'G','e','t','P','r','o','c','A','d','d','r','e','s','s',0}; char szLoadLibrary[] = {'L','o','a','d','L','i','b','r','a','r','y','A',0}; char szMessageBox[] = {'M','e','s','s','a','g','e','B','o','x','A',0}; char szHelloShellCode[] = {'H','e','l','l','o','S','h','e','l','l','C','o','d','e',0};
找到InLoadOrderModuleList
存入寄存器
__asm { mov eax,fs:[0x30] // PEB mov eax,[eax+0x0C] // PEB->LDR add eax,0x0C // LDR->InLoadOrderModuleList mov pBeg,eax mov eax,[eax] mov pPLD,eax }
找到kernel32.dll,通过遍历的方式来寻找,通过LDR指向DllBase
获取基址
// Find Kerner32.dll while (pPLD != pBeg) { pLast = (WORD*)pPLD->BaseDllName.Buffer; pFirst = (WORD*)szKernel32; while (*pFirst && *pLast == *pFirst) pFirst++,pLast++; if (*pFirst == *pLast) { dwKernelBase = (DWORD)pPLD->DllBase; break; } pPLD = (LDR_DATA_TABLE_ENTRY*)pPLD->InLoadOrderLinks.Flink; }
然后通过指针定位到导出表
// 通过指针定位到导出表 PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)dwKernelBase; PIMAGE_NT_HEADERS pNTHeader = (PIMAGE_NT_HEADERS)((DWORD)pDosHeader + pDosHeader->e_lfanew); PIMAGE_FILE_HEADER pPEHeader = (PIMAGE_FILE_HEADER)((DWORD)pDosHeader + pDosHeader->e_lfanew + 4); PIMAGE_OPTIONAL_HEADER32 pOptionHeader = (PIMAGE_OPTIONAL_HEADER32)((DWORD)pPEHeader + sizeof(/images/shellcode/image_FILE_HEADER)); PIMAGE_SECTION_HEADER pSectionHeader = (PIMAGE_SECTION_HEADER)((DWORD)pOptionHeader + pPEHeader->SizeOfOptionalHeader); PIMAGE_EXPORT_DIRECTORY pExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((DWORD)dwKernelBase + pOptionHeader->DataDirectory[0].VirtualAddress); // 导出函数地址表RVA DWORD *pAddOfFun_Raw = (DWORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfFunctions); // 导出函数名称表RVA WORD *pAddOfOrd_Raw = (WORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfNameOrdinals); // 导出函数序号表RVA DWORD *pAddOfNames_Raw = (DWORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfNames);
还是通过遍历找到GetProcessAddress
,用指针指向这个地址
DWORD dwCnt = 0; char* pFinded = NULL, *pSrc = szGetProcAddress; for (; dwCnt < pExportDirectory->NumberOfNames;dwCnt++) { pFinded = (char*)((DWORD)dwKernelBase + pAddOfNames_Raw[dwCnt]); while (*pFinded && *pFinded == *pSrc) pFinded++, pSrc++; if (*pFinded == *pSrc) { pGetProcAddress = (PGETPROCADDRESS)(pAddOfFun_Raw[pAddOfOrd_Raw[dwCnt]] + (DWORD)dwKernelBase); break; } pSrc = szGetProcAddress; }
然后就可以使用pGetProcessAddress
实现LoadLibrary
和MessageBox
// 通过pGetProcAddress进行调用 pLoadLibrary = (PLOADLIBRARY)pGetProcAddress((HMODULE)dwKernelBase, szLoadLibrary); pMessageBox = (PMESSAGEBOX)pGetProcAddress(pLoadLibrary(szUser32),szMessageBox); pMessageBox(NULL,szHelloShellCode,0,MB_OK);
完整代码如下
// shellcode.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <windows.h> #include <stdio.h> #include <string.h> typedef struct _UNICODE_STRING { USHORT Length; USHORT MaximumLength; PWSTR Buffer; } UNICODE_STRING, *PUNICODE_STRING; typedef struct _PEB_LDR_DATA { DWORD Length; bool Initialized; PVOID SsHandle; LIST_ENTRY InLoadOrderModuleList; LIST_ENTRY InMemoryOrderModuleList; LIST_ENTRY InInitializationOrderModuleList; } PEB_LDR_DATA,*PPEB_LDR_DATA; typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; UINT32 SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; UINT32 Flags; USHORT LoadCount; USHORT TlsIndex; LIST_ENTRY HashLinks; PVOID SectionPointer; UINT32 CheckSum; UINT32 TimeDateStamp; PVOID LoadedImports; PVOID EntryPointActivationContext; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY; typedef HMODULE (WINAPI * PLOADLIBRARY)(LPCSTR); typedef DWORD (WINAPI * PGETPROCADDRESS)(HMODULE, LPCSTR); typedef DWORD (WINAPI * PMESSAGEBOX)(HWND, LPCSTR,LPCSTR,UINT); DWORD WINAPI ShellCode(); int main(int argc, char* argv[]) { ShellCode(); getchar(); return 0; } DWORD WINAPI ShellCode() { PGETPROCADDRESS pGetProcAddress = NULL; PLOADLIBRARY pLoadLibrary = NULL; PMESSAGEBOX pMessageBox = NULL; PLDR_DATA_TABLE_ENTRY pPLD; PLDR_DATA_TABLE_ENTRY pBeg; WORD *pFirst = NULL; WORD *pLast = NULL; DWORD ret = 0, i = 0; DWORD dwKernelBase = 0; char szKernel32[] = {'k',0,'e',0,'r',0,'n',0,'e',0,'l',0,'3',0,'2',0,'.',0,'d',0,'l',0,'l',0,0,0}; // Unicode char szUser32[] = {'u','s','e','r','3','2','.','d','l','l',0}; char szGetProcAddress[] = {'G','e','t','P','r','o','c','A','d','d','r','e','s','s',0}; char szLoadLibrary[] = {'L','o','a','d','L','i','b','r','a','r','y','A',0}; char szMessageBox[] = {'M','e','s','s','a','g','e','B','o','x','A',0}; char szHelloShellCode[] = {'H','e','l','l','o','S','h','e','l','l','C','o','d','e',0}; __asm { mov eax,fs:[0x30] // PEB mov eax,[eax+0x0C] // PEB->LDR add eax,0x0C // LDR->InLoadOrderModuleList mov pBeg,eax mov eax,[eax] mov pPLD,eax } // Find Kerner32.dll while (pPLD != pBeg) { pLast = (WORD*)pPLD->BaseDllName.Buffer; pFirst = (WORD*)szKernel32; while (*pFirst && *pLast == *pFirst) pFirst++,pLast++; if (*pFirst == *pLast) { dwKernelBase = (DWORD)pPLD->DllBase; break; } pPLD = (LDR_DATA_TABLE_ENTRY*)pPLD->InLoadOrderLinks.Flink; } // Kernel32.dll -> GetProcAddress if (dwKernelBase != 0) { // 通过指针定位到导出表 PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)dwKernelBase; PIMAGE_NT_HEADERS pNTHeader = (PIMAGE_NT_HEADERS)((DWORD)pDosHeader + pDosHeader->e_lfanew); PIMAGE_FILE_HEADER pPEHeader = (PIMAGE_FILE_HEADER)((DWORD)pDosHeader + pDosHeader->e_lfanew + 4); PIMAGE_OPTIONAL_HEADER32 pOptionHeader = (PIMAGE_OPTIONAL_HEADER32)((DWORD)pPEHeader + sizeof(/images/shellcode/image_FILE_HEADER)); PIMAGE_SECTION_HEADER pSectionHeader = (PIMAGE_SECTION_HEADER)((DWORD)pOptionHeader + pPEHeader->SizeOfOptionalHeader); PIMAGE_EXPORT_DIRECTORY pExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((DWORD)dwKernelBase + pOptionHeader->DataDirectory[0].VirtualAddress); // 导出函数地址表RVA DWORD *pAddOfFun_Raw = (DWORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfFunctions); // 导出函数名称表RVA WORD *pAddOfOrd_Raw = (WORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfNameOrdinals); // 导出函数序号表RVA DWORD *pAddOfNames_Raw = (DWORD*)((DWORD)dwKernelBase + pExportDirectory->AddressOfNames); DWORD dwCnt = 0; char* pFinded = NULL, *pSrc = szGetProcAddress; for (; dwCnt < pExportDirectory->NumberOfNames;dwCnt++) { pFinded = (char*)((DWORD)dwKernelBase + pAddOfNames_Raw[dwCnt]); while (*pFinded && *pFinded == *pSrc) pFinded++, pSrc++; if (*pFinded == *pSrc) { pGetProcAddress = (PGETPROCADDRESS)(pAddOfFun_Raw[pAddOfOrd_Raw[dwCnt]] + (DWORD)dwKernelBase); break; } pSrc = szGetProcAddress; } } // 通过pGetProcAddress进行调用 pLoadLibrary = (PLOADLIBRARY)pGetProcAddress((HMODULE)dwKernelBase, szLoadLibrary); pMessageBox = (PMESSAGEBOX)pGetProcAddress(pLoadLibrary(szUser32),szMessageBox); pMessageBox(NULL,szHelloShellCode,0,MB_OK); return 0; }
成功弹窗
这里我们进反汇编看一下,是有检测堆栈平衡的代码的
在物理机里面查看也是有的
这里关闭一下堆栈平衡的检测,默认情况如下
修改为禁用安全检查
即可生成没有检查堆栈平衡的代码
