现在采集,以后解密:真随机数应对量子计算威胁

VSole2022-08-06 21:54:58

加密有两个重要问题:密钥及其分发。分发通常通过非对称加密完成,但分发可以被拦截,非对称加密会被破解。这一问题到今天仍然存在,而且随着量子计算机的到来,破解问题将变得更加严重。非对称加密首当其冲(Shor量子算法已被证明有效)。这导致了一种新的攻击手段,“现在采集,以后解密”。

攻击者,尤其是国家支持的网络黑客,目前正在设法收集加密数据,期望将来能够解密。量子解密已不是技术问题,只是时间迟早的问题。

针对这一未来的威胁,量子安全公司Qrypt发布了一款产品“Qrypt密钥生成”,旨在消除传统密钥分发的需要,从而消除非对称加密。Chris Schnabel,曾任IBM量子部门的产品经理,现在是Qrypt公司的产品副总裁。Qrypt公司专注于使用量子技术防止未来的加密被量子计算机破解。不过Schnabel认为,至少“根据目前的情况,我们不太可能在未来20年内看到真正的量子计算机。”

但这一说法还有一个重要的附加条件,量子计算机的能力取决于可控制的量子比特数。由于量子天然的不稳定性,可能需要1000个量子位才能有1个受控量子位。这就是Schnabel推论20年内才能实现一台具有足够量子比特的量子计算机的原因。但“总会有意外”,如果在可控的量子比特数量上出现突破,可能会大大降低20年的预测。

高科技项目往往是国家的绝对机密,例如震网(Stuxnet)出现之前,没有人知道恶意软件能物理破坏铀浓缩离心机,但当时肯定至少有上千名研究人员在秘密开发它。量子计算也一样,我们不知道谁在开发或谁已经离生产一台真正的量子计算机有多近。这意味着量子解密的风险,在今天必须得到重视。

Qrypt正在解决这个问题,方法是删除加密公式中的密钥分发部分,并使用量子方法生成真正的随机数,以产生更安全的密钥。伪随机数问题一直都是密钥生成的关键弱点,成功的破解方法几乎总是集中在随机性的这一缺陷上。

Qrypt解决方案的概念非常简单,但背后涉及的技术却非常复杂。对称加密密钥由Qrypt的BLAST算法生成,它使用量子随机数在加密数据的源和目标同时生成密钥。所需的只是将Qrypt的SDK集成到公司现有的密钥管理解决方案中。

量子随机数由Qrypt在云上生成,并发送到两个端点。BLAST算法使用这个随机数,在两端同时生成一个安全密钥。然后,用户集中算力并使用抗量子计算的对称算法来加密数据。由于不再需要将密钥从A发送到B,因此拦截密钥并解密的攻击方法失去了意义。

真随机数的产生是这个解决方案背后最为复杂的技术,Qrypt使用了几种不同的基于量子力学的随机数生成器。所有这些都基于已发布的技术,有着西班牙光子科学研究所(ICFO)、洛斯阿拉莫斯国家实验室、橡树岭国家实验室和洛桑联邦理工学院(EPFL)等研究机构,提供的新量子资源类型路线图。

真随机数的生成原理,是将量子设备(如激光发射器)发出的两个正弦波叠加,根据干涉生成的波峰和波谷在其中随机取0或1。听上去很容易,但是要消除其中的电子噪声并使其有效可用的工程化工作,是一个艰巨的难题。但,这是一个真正的随机数。

这个随机数在云中生成,意味着可根据需求量弹性产生。对称加密密钥使用这个随机数在源和目标两端的本地生成,不需要将密钥从A分发到B。而本地生成的密钥可以基于真正的强对称加密算法,来于加解密数据,这些数据就是从A发送到B的全部内容。

Qrypt的密钥生成技术帮助用户在数字环境中应用世界上最安全的加密,有效应对“现在采集,以后解密”的未来风险。

--Qrypt首席技术官丹尼斯·曼迪奇

之前基于暗光纤的量子密钥分发(QKD)技术得到许多关注和尝试。然而,2020年3月,英国英国国家网络安全中心(NCSC)发布了一项声明:“考虑到QKD对传统密钥协议机制的特殊硬件要求,以及在所有用例情况下对身份验证的要求,NCSC不支持在任何政府或军事应用中使用QKD,并告诫商业关键网络,尤其是国家关键基础设施部门,不要完全依赖QKD。”

Qrypt总部位于纽约,由首席技术官丹尼斯·曼迪奇和凯文·查克尔(首席执行官)于2019年2月创立。两人都是美国前中央情报局官员。

量子计算机随机数
本作品采用《CC 协议》,转载必须注明作者和本文链接
攻击者,尤其是国家支持的网络黑客,目前正在设法收集加密数据,期望将来能够解密。针对这一未来的威胁,量子安全公司Qrypt发布了一款产品“Qrypt密钥生成”,旨在消除传统密钥分发的需要,从而消除非对称加密。但这一说法还有一个重要的附加条件,量子计算机的能力取决于可控制的量子比特数。这个随机数在云中生成,意味着可根据需求量弹性产生。两人都是美国前中央情报局官员。
中关村在线消息,量子计算软件企业Strangeworks公司宣布与全球最大的综合性独立量子计算公司Quantinuum联合推出前述服务。这项合作中,Quantinuum公司的量子增强型密码密钥Quantum Origin将为Strangeworks公司的生态系统提供先进的密码功能。
美国两家量子公司联手,将推出全球首个由量子计算机生成的量子加密密钥服务。美国得克萨斯州中部时间2022年1月5日,量子计算软件企业Strangeworks公司宣布与全球最大的综合性独立量子计算公司Quantinuum联合推出前述服务。Quantinuum拥有垂直整合的解决方案,包括最高性能的量子计算机以及全面的量子软件。
量子通信的发展目标是构建全球范围的广域量子通信网络体系。通过光纤实现城域量子通信网络,进而通过中继器实现邻近两个城市之间的连接,最终通过卫星平台的中转实现遥远区域之间的连接,是广域量子通信网络的发展路线。
研究人员也指出,他们想为业界带来一个重要的信息,那就是量子加密还不如理想中的可靠,它是有缺陷、能被攻破的技术,而攻破这个最强的加密之盾的工具,却不是什么神兵利器,而是盾本身就存在物理缺陷。
本文将详细分析Shor算法的实现过程,整数周期数及非整数周期数下Shor算法分析,Shor算法概率评估,实例分析。比如Hadamard门,简称H门,他的一个主要功能就是通过计算基态产生等概率的叠加态。shor算法最令人振奋的是直接将质因子分解以及离散对数问题以指数级速度提升,这给人们的启示是可以利用同样算法思想来解决更为广泛的隐含子群问题。
1985 年Deutsch进一步阐述了量子计算机的基本概念,并证实了在某些方面,量子计算机相比经典计算机而言确实具有更强大的功能。除此之外,欧盟、加拿大、中国等组织、国家和地区在量子计算机领域的研究也做出积极响应并取得了一系列的研究成果。2001 年, 一 个 由 IBM 公司成功研发的 7qubit 的示例性量子计算机成功领跑了该领域的研究。
RSA面临的威胁十分紧迫,因此NIST正在寻找一种量子安全的可行替代方案。现有的算法以及当前NIST竞赛中的算法,均被认为属于“quantum safe”,而非“quantum secure”。也就是说,它提供了完美的加密措施。SIKE crack事件强调的是绝对安全,而非相对安全。最初RSA密钥的长度为128位,并被认为预计数百万年之后才能被破解。
信息安全是事关国计民生的重大战略领域。传统的信息安全通过依赖于计算复杂度的加密算法来实现,然而随着计算能力的飞速发展,依赖于计算复杂度的传统加密算法面临着日益加剧的安全风险。 基于量子密钥分发的量子保密通信是迄今唯一原理上无条件安全的通信方式。量子密钥分发是指利用量子态来加载信息,通过一定的协议产生密钥。量子力学基本原理保证了密钥的不可窃听,从而实现安全的量子保密通信。量子保密通信的安全性基于物
VSole
网络安全专家