数据治理安全理论落地与实践(下):数据安全能力联动
研究背景
随着数字化经济快速增长,数据安全风险与日俱增,导致危害程度不断加深,数据泄露、数据滥用、数据贩卖等数据安全事件频发,呈现持续递增的态势,对国家安全、社会稳定、企业组织权益、个人隐私安全造成了严重威胁。在云计算、大数据、人工智能等新技术不断发展和作用下,数据安全事件不仅会对企业组织造成严重的社会影响和经济损失外,特别是针对国家关键基础设施或个人地理位置、生物特征、医疗健康等隐私信息的恶意攻击,甚至会危害社会个体生命安全。
为了有效应对当前严峻的数据安全形势,防范勒索软件等新型攻击方法,以及处理远程办公安全访问等新场景、新兴技术、新兴产业带来数据安全方面的不确定性,保障数据要素的安全开发和利用,我国先后出台了《网络安全法》、《数据安全法》、《个人信息保护法》等法律,作为国家整体数据安全的重要组成部分,为保护国家关键数据资源安全和个人隐私信息安全提供了充分的法律依据,同时加强对数据安全管理的指导审查,监督与保障。
数据安全先构建数据分类分级底座
首先在宏观层面,我国数据安全领域的法律法规、监管政策与标准规范为行业数据治理安全提供了良好的政策环境保障。同时,随着数据安全法律法规、监管政策等具体要求的进一步明确,也对企业组织开展数据安全保护工作,落实数据安全保护责任提出了更高要求,企业组织通过数据治理安全理论进行数据安全体系的顶层设计,先构建数据分类分级底座,自下而上落地,进而实现生态的数据安全能力的联动,目的是实现数据闭环管控。
其次在微观层面,数据治理安全能力建设围绕覆盖数据全生命周期和使用场景的数据治理安全理论进行。从决策到技术,从制度到工具,从组织架构到安全能力通盘考量,实现数据的“进不来,拿不走,看不懂,改不了,跑不掉”闭环管控,强大的数据治理安全平台能力支撑是数据治理安全理论落地保障,技术的创新和演进是数据分类分级落地的坚实基础和措施。
根据《GB/T37988-2019信息安全技术数据安全能力成熟度模型》国家标准,数据的生命周期分为采集、传输、存储、处理、交换和销毁六个阶段
