人工智能在全域敏感数据发现中的应用

VSole2022-04-07 22:22:50

随着大数据时代的到来,数据价值的深度应用成为助力企业发展的重要源动力。在企业的数字化转型过程中,加强数据治理、深化数据开发、保障数据安全成为释放数据价值的关键环节,而强化数据安全对企业的数字化转型和升级起着至关重要的作用。

基于此,CIO时代、新基建创新研究院联合霍因科技推出”霍因安全观”系列线上微课堂,详细介绍数据安全治理的方法论、先进技术、典型案例及实践成果,展现数据安全治理的全生命周期管理,助力企业的数字化转型与升级。首期霍因安全观微课堂讲述:人工智能在全域敏感数据发现中的应用。

大数据时代,所有数据都具有了一定的价值。价值的背后潜藏着巨大风险,大量敏感数据被贩卖、窃取和无授权滥用,这一问题已经严重危害到个人隐私、企业发展甚至国家安全。

如何迈好数据安全治理的第一步

数据安全治理是企业安全管理的重要组成也是管理难点之一,随着《网络安全法》、《民法典》、《数据安全法》和《个人信息保护法》等国家相关法律法规的出台,以及地方性、行业性的规范及指导意见的实施,都体现出数据安全管理的重要性和必要性。

但数据安全治理并不是一蹴而就的,从《GB∕T 37988-2019 信息安全技术 数据安全能力成熟度模型》(DSMM模型)中可以看出,数据安全是涉及到数据完整生命周期的全过程安全管理。

GB∕T 37988-2019 信息安全技术 数据安全能力成熟度模型


从数据安全过程管理角度看,数据采集阶段是践行DSMM数据安全管理的第一步。在数据采集阶段所需要做的数据发现、数据定义、数据分级分类等工作,是后续更好的完成数据过程管理的基础。

全域敏感数据发现正在面临巨大挑战

对于企业而言,数据安全的核心是针对特定的敏感信息实施安全防护。在数据安全治理中,数据采集阶段的重要目标是完成数据分类分级。可在执行中,企业通常会面临以下的一些挑战:

  • 不知道哪些系统存有需要处置的数据?
  • 只有数据库中的数据才需要管理么?
  • 如何根据自身业务情况配置分类分级策略?

由此可见,进行数据分类分级的前提是了解客户环境中全量数据情况。从目前主流的数据安全管理产品现状来看,除开进行敏感数据发现时手段单一之外,还存在以下两方面的问题:

支持的数据源范围有限:以主流的敏感数据扫描产品为例,在进行敏感数据发现时,主要面向的是数据库系统,但大量客户的数据使用环境并不是只有数据库,包括企业网盘、流程平台、大数据开发甚至IM通讯软件中都存有大量的敏感信息数据。

数据发现的手段单一:传统的数据安全产品依据的是大量定义正则表达式规则匹配完成数据库的敏感数据扫描。数据发现的范围及精准度完全依赖于正则规则丰富度及准确度。很难确保数据发现不出现遗漏、偏离等问题。

除此之外,诸如大量人工配置、发现效率低等问题都制约了客户完成数据安全治理的目标达成。

人工智能如何支持全域敏感数据发现

1、善用机器学习的能力

经过霍因的长期经验总结,机器学习是目前分析、理解、识别数据模式的最佳工具。在数据安全治理过中合理的借助机器学习的能力,能有效解决全域敏感数据发现过程中准确度、匹配度等问题。

其次,机器学习具备广泛的技术适配性,可通过多种技术的复合应用来解决企业应用场景中异构数据类型及不同数据源的全域敏感数据的发现。

例如,在针对传统敏感数据发现产品中不具备的非结构化数据扫描,可通过NLP(自然语言处理)技术进行扫描及敏感特征发现,还可以通过k-means算法技术完成相似数据的发现、聚类识别等。

2、AI(人工智能)赋能

目前,企业生成的数据量正呈指数级增长,这是由于隐藏于数据库中所有未被发现的敏感信息进行评估而产生的。自动化的广泛应用,是可以有效提升数据治理的。因此,可通过两方面实现AI赋能全域敏感数据发现:

1)基于AI发现能力

通过自动化嗅探技术将客户环境中的存储进行识别,并通过扫描样例数据摸底,初步梳理出客户的数据资产。包括:

  • 通过SQL检索摸底并梳理结构化数据库数据信息;
  • 通过NLP及对应的数据学习模型完成非结构化文档中的敏感数据解析;
  • 通过大数据连接组件及内置的正则式发现半结构化数据中的敏感信息。

2)利用AI分类分级

在了解客户基本数据环境情况以后,产品通过内置的智能分类器对全量数据进行自动化标签处理,并再结合法律法规的解读和导入进行自动化的分级分类处置。在处理过程中,通过聚类算法等方式提高处理效率及准确性。

数据安全管理的前提是对全域全量数据的发现及合理化的分类分级,霍因数据安全治理平台可通过AI技术赋能数据安全治理过程,让客户了解数据现状,从而更好的开展后续数据安全管理工作。

本平台通过实践DSMM模型期间形成“咨询-发现-管控”流程体系,完成数据完整生命周期过程中的安全管理工作。平台采用多种AI技术,将客户的数据环境通过不同的数据发现及扫描分类技术进行自动化预处理。降低客户在进行数据安全治理期间第一步“全域全量数据发现”的难度。

数据安全人工智能
本作品采用《CC 协议》,转载必须注明作者和本文链接
7月16日—18日,“创新赋能·科技自强”——第十一届吴文俊人工智能科学技术奖颁奖盛典暨2021中国人工智能产业年会隆重举办。在颁奖盛典上,共有66个获奖项目及个人受到表彰奖励。其中,网络空间安全技术论坛聚焦“人工智能发展与数据安全挑战”,由电子科技大学和安恒信息承办。数据安全工作需要监管机构以及社会企业共同努力,最大化发挥数据价值,强化数据安全治理。
7月9日,在“2021世界人工智能大会安全高端对话”论坛上,中心副主任何小龙发布《人工智能数据安全与监管机制研究》报告。当前,人工智能正加速融入人们生产和生活的各个领域,深刻改变着生产和生活方式。数据是驱动本轮人工智能快速发展的重要基础,数据安全决定了人工智能安全。人工智能发展与数据安全问题相互交织、不可分割,有必要加快人工智能数据安全风险研判,在引导人工智能健康发展的同时,积极加强数据安全监管与治理。
美国 OpenAI 公司 2022 年发布的生成式人工智能(AIGC)产品 ChatGPT,凭借拥有高质量文本内容的输出能力,能够精确、高效地完成分析、翻译、撰写代码等工作,引发了广泛关注。
数据安全和隐私保护问题由此成为人工智能系统在开发和应用中面临的严峻挑战。在近日召开的第十一届吴文俊人工智能科学技术奖颁奖盛典暨2021中国人工智能产业年会上,多位专家学者就此展开了探讨。实际上,人工智能数据采集、存储、利用等方面所面临的威胁,不仅侵害公民的合法权益,更加不利于人工智能相关产业的发展。法律规制和标准设立亟待完善“不可否认,人工智能的发展带来了一系列崭新的法律问题。”
国家工业信息安全发展研究中心作为国家级信息安全研究和推进机构,联合华为技术有限公司共同研究编制了《数据安全白皮书》,全面分析了我国数据安全产业基础、防护关键技术、法律法规体系现状,从提升数据安全产业基础能力、加快研究和应用数据安全防护技术、强化法律法规在数据安全主权的支撑保障作用等三方面展望数据安全发展未来,提出了数据安全发展倡议,为行业发展提供借鉴和参考,积极推动我国数据治理工作有序开展。
今年以来,以ChatGPT为代表的人工智能技术迅速发展,使人惊呼“未来已来”。
2月25日,第六届中国人工智能与大数据海南高峰论坛在海口举行。海南省营商环境建设厅副厅长符革致辞随后,中国工程院院士孔志印在论坛上发表了题为《大数据时代的数据安全挑战与对策》的主旨演讲。安恒信息AiLand数据安全岛解决方案致力于解决如何推动公共数据授权运营,打破信息壁垒和数据孤岛,解决公共数据授权运营过程中,数据安全和隐私保护的两大业界难点。
数据安全有序流动是保障数字经济健康快速发展的关键基石,然而国家间数据流动往往伴生着数据控制权的转移,必然涉及国际数据安全互信和规则认同。积极提升在全球数据安全规则的话语权和主导权,推动构建有利于本国数字经济发展利益的国际制度格局,是世界各国的普遍共识和必然选择。然而,与欧美国家相比,我国数据安全规则影响力与数字经济发展水平不匹配,数据安全规则制定权和话语权不足的问题较为突出。重点分析国际数据安全
中心副主任何小龙应邀参加会议,围绕“人工智能基础设施赋能智慧城市建设”发表主题演讲,并发布《智慧城市人工智能计算平台白皮书》。
VSole
网络安全专家